Spectroscopic Studies on Unfolding Processes of Apo-Neuroglobin Induced by Guanidine Hydrochloride and Urea

نویسندگان

  • Cui Zhang
  • Chaohui Gao
  • Jianshuai Mu
  • Zhanglei Qiu
  • Lianzhi Li
چکیده

Neuroglobin (Ngb), a recently discovered globin, is predominantly expressed in the brain, retina, and other nerve tissues of vertebrates. The unfolding processes of apo-neuroglobin (apoNgb) induced by guanidine hydrochloride (GdnHCl) and urea were investigated by spectroscopic methods. In the unfolding processes, apoNgb's tertiary structural transition was monitored by the changes of intrinsic fluorescence emission spectra, and its secondary structural transition was measured by the changes of far-ultraviolet circular dichroism (CD) spectra. In addition, 8-anilino-1-naphthalenesulfonic acid (ANS), a hydrophobic cluster binding dye, was also used to monitor the unfolding process of apoNgb and to explore its intermediates. Results showed that GdnHCl-induced unfolding of apoNgb was via a three-state pathway, that is, Native state (N) → Intermediate state (I) → Unfolded state (U), during which the intermediate was inferred by an increase in fluorescence intensity and the change of CD value. Gibbs free energy changes are 10.2 kJ · mol(-1) for the first unfolding transition and 14.0 kJ · mol(-1) for the second transition. However, urea-induced unfolding of apoNgb only underwent a two-state transition: Native state (N) → Partially unfolded state (P). The result showed that GdnHCl can efficiently affect the conformational states of apoNgb compared with those of urea. The work will benefit to have an understanding of the unfolding mechanism of apoNgb induced by GdnHCl and urea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation and Unfolding of Protein Tyrosine Phosphatase from Thermus thermophilus HB27 during Urea and Guanidine Hydrochloride Denaturation

The effects of urea and guanidine hydrochloride (GdnHCl) on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase), a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation...

متن کامل

Distribution, Transition and Thermodynamic Stability of Protein Conformations in the Denaturant-Induced Unfolding of Proteins

BACKGROUND Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation ...

متن کامل

Unfolding kinetics of dimeric creatine kinase measured by stopped-flow small angle X-ray scattering.

The unfolding kinetics of creatine kinase (CK) in various concentrations of urea or guanidine hydrochloride (GuHCl) was investigated by small angle X-ray scattering (SAXS) using synchrotron radiation, and compared with the results obtained by stopped-flow circular dichroism and stopped-flow fluorescence. Using the three methods, the unfolding kinetics of CK fits well to a single exponential fun...

متن کامل

Differences in the Pathways of Proteins Unfolding Induced by Urea and Guanidine Hydrochloride: Molten Globule State and Aggregates

It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the...

متن کامل

The effect of urea and guanidine hydrochloride on activity and optical rotation of crystalline papain.

The catalytic activity of several proteolytic enzymes is altered by high concentrations of urea and guanidine salts (2-4). These studies, in conjunction with certain physical data, indicate that hydrogen bonding in the secondary structure of these enzymes is essential for maintenance of their catalytic function. Because of the increasing amount of information that is available concerning the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013